Skip to contents

This function constructs a log-likelihood function for a single regression coefficient (beta1), conditional on selection via the overall F-test. The log-likelihood is approximated using Monte Carlo integration.

Usage

compute_likelihood_function(X, y, sigma_sq, alpha_ov = 0.05, B = 1e+06)

Arguments

X

A numeric matrix of predictors (n x p), with beta1 corresponding to the first column.

y

A numeric response vector of length n.

sigma_sq

The noise variance.

alpha_ov

The significance level for the overall F-test (default: 0.05).

B

The number of Monte Carlo samples (default: 1e6).

Value

A function of one argument beta1 that returns the approximate log-likelihood, conditional on selection. If the observed data fails the selection condition, the function returns -Inf.